Quantum Bootcamp (Week 1- Virtual) - Quantum Algorithms, Quantum Advantage and Applications

Dates: 5th, 6th and 7th March 2024

Venue: Online

Week 1: Quantum Algorithms, Quantum Advantage and Applications

For this set of workshops, we provide an overview of the different types of quantum algorithms that have played a significant role in shaping the landscape for the field of quantum computing. Through the lens of these algorithms, you will learn how the field has developed over the past few decades and what potential changes that might bring to the world of computing, while learning the basics of how to implement them in AWS Braket.

Goals for Week 1

- 1. Learn the various Quantum Algorithmic techniques that are historically significant and currently in popular discussion.
- 2. Discuss the potential advantages Quantum Computing has and when these advantages might be realized.
- 3. Identify the types of problems these algorithmic techniques might be applicable to.

Day 1: AWS Braket Fundamentals / The Classic Quantum Algorithms Part 1

Overview: When the idea of Quantum Computing and information was first pitched, it inspired a new avenue of research, but did not take the world by storm. That came later when the first Quantum Computing algorithms were pitched, with Shor's algorithm and Grover's algorithm being among the forerunners and the most famous. Over the sessions in the next two days, you will be learning two main topics: the basics of these algorithms, how they provide an advantage, and why they caused the storm they did; and a brief introduction to the capabilities of AWS Braket so that you can learn how to apply these algorithms.

Time	Activity	Remarks	Presenter
0845 - 0900	Registration		
0900 - 0915	Welcome and Introduction of Organizer and Instructor Team		Pawsey, Softserve, AWS representative es and course instructors

0915 - 1115	Introduction to AWS Braket	Objective: Introduction to Amazon Braket (optionally including a brief recap of quantum circuit building blocks) Enabling participant access to the AWSprovided workshop environment (including temporary AWS accounts) Tutorial: How to run quantum tasks on simulators and QPUs (participants may follow along at their own pace to acquire hands-on experience)	Brajesh Gupt, Quantum Applied Scientist at AWS
1115 - 1130	Introduction to the workshops	Objective: - Briefly explain the agenda for the next few days	Jonas Tan, SoftServe R&D

		Quantum Team Lead
1130 - 1300	Lunch	

1300 - 1445	A Brief History of Quantum Computing and Introduction of Important Concepts	Objective: To start with a broader view of Quantum computing leading to the creation of the classic Quantum algorithms Set the framework for the next two days. To do a brief recap of some of the basic notions of Quantum Computing Participants will learn (or relearn) about qubits, quantum operations in the form of quantum gates, quantum circuits Go through important notation (like linear algebra notation) for Quantum Computing	Jonas Tan, SoftServe R&D Quantum Team Lead
1445 - 1500	Break		
1500 - 1630	Deutsch-Jozsa Algorithm	Objective: To introduce the theory behind the DJ Algorithm To show how a simple quantum algorithm looks like Introduce the basic concept of oracle that is present for	Dikshant Dulal, SoftServe R&D Quantum Research Engineer
		many quantum algorithms	

Time	Activity	Remarks	Presenter
0845 - 0900	Registration		
0900 - 0945	Introduction to Quantum Fourier Transform	Objective: To introduce the theory behind QFT Discuss the pros and cons between QFT and other implementations like FFT	Dikshant Dulal, SoftServe R&D Quantum Research Engineer
0945 - 1045	Quantum Fourier Transform Hands-on	Objective: To implement the Quantum Fourier Transform Start with the 3 qubit QFT, and progress to the general QFT on AWS Braket	
1045 - 1100	Break		
1100 - 1230	Introduction to Quantum Phase Estimation and Shor's Algorithm	Objective: To introduce the theory behind QPE To show how to access it through AWS Braket Briefly describe the applications of QPE, including Shor's Algorithm	Jonas Tan, SoftServe R&D Quantum Team Lead
1230 - 1400	Lunch		

1400 - 1600	Introduction to Amazon Braket Hybrid Jobs	Objective: Tutorial: How to run a hybrid job (participants may follow along at their own pace to acquire hands-on experience) Review an exemplary hybrid quantum-classical algorithm: QAOA Tutorial: How to run QAOA on Braket Hybrid Jobs (participants may follow along at their own pace to acquire hands-on experience)	Sebastian Stern, Quantum Solutions Architect at AWS
1600 - 1615	Break		
1615 - 1700	Quantum Advantage	Objective: Why should we look at quantum advantage, and where should we look? Brief intro to different computational complexity classes with quantum Discussions of quantum advantage beyond computational complexity classes, and whether they are valid	Jonas Tan, SoftServe R&D Quantum Team Lead Dikshant Dulal, SoftServe R&D Quantum Research Engineer

Day 3: Variational Quantum Algorithms

Overview: Although the classic quantum algorithms inspired people to take notice of the field, it soon became clear that in the short term these algorithms were not going to change anything as the required hardware was just too far away. While engineers started working on quantum hardware, another question was raised: "could we do anything with the current noisy smaller scale quantum

computers?" You will learn about one of the answers to that question, variational quantum algorithms, and the ingenious ways people are pairing quantum computing with classical computing.

Time	Activity	Remarks	Presenter
0845 - 0900	Registration		
0900 - 0945	Introduction to Grover's Algorithm	Objective: - To introduce the theory behind Grover's Algorithm	Jonas Tan, SoftServe R&D Quantum Team Lead
0945 - 1045	Grover's Algorithm Hands-on	Objective: To implement a Grover's search algorithm for a simple, small-scale problem To learn how to access the general purpose one by AWS Braket To demonstrate how many qubits and gates we need to use before we have a useful Grover's algorithm	
1045 - 1100	Break		
1100 - 1200	Current Problems and how the Field moved Forward	Objective: To describe the problems faced by the classic Quantum Algorithms Briefly describe efforts in Quantum Error Correction	Jonas Tan, SoftServe R&D Quantum Team Lead

		- Lead into today's agenda for variational quantum computing	
1200 - 1330	Lunch		

1330 - 1430	Introduction to VQE and QAOA	Objective: - To introduce the theory behind VQE and QAOA	Dikshant Dulal, SoftServe R&D Quantum
1430 - 1515	VQE Hands-on	Objective: To implement a simple VQE algorithm To learn how to access the general purpose one by AWS Braket	Research Engineer
1515 - 1530	Break		
1530 - 1615	Quantum Neural Network Introduction Hands-on	Objective: To show other forms of variational algorithms Brief look into QML To teach how to implement a simple Quantum Neural Network We will use Amazon Braket to do a hybrid job with Pennylane for this.	Dikshant Dulal, SoftServe R&D Quantum Research Engineer
1615 - 1700	QC and Industry	Objective: Discussion of the current landscape of Quantum Computing Go through who is looking at QC, and why they are interested in it	Jonas Tan, SoftServe R&D Quantum Team Lead